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Disclaimer 
 

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor 

any of their employees, makes any warranty, express or implied, or assumes any legal 

liability or responsibility for the accuracy, completeness, or usefulness of any 

information, apparatus, product, or process disclosed, or represents that its use would not 

infringe privately owned rights. Reference herein to any specific commercial product, 

process, or service by trade name, trademark, manufacturer, or otherwise does not 

necessarily constitute or imply its endorsement, recommendation, or favoring by the 

United States Government or any agency thereof. The views and opinions of authors 

expressed herein do not necessarily state or reflect those of the United States Government 

or any agency thereof. 
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Abstract 

Incomplete or sparse information on types of data such as geologic or formation characteristics 

introduces a high level of risk for oil exploration and development projects.  “Expert" systems developed 

and used in several disciplines and industries have demonstrated beneficial results.  A state-of-the-art 

exploration “expert” tool, relying on a computerized database and computer maps generated by neural 

networks, is being developed through the use of “fuzzy” logic, a relatively new mathematical treatment of 

imprecise or non-explicit parameters and values.  Oil prospecting risk can be reduced with the use of a 

properly developed and validated “Fuzzy Expert Exploration (FEE) Tool.” 

This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and 

gas prospecting as well as decreased prospecting and development costs.  In the 1998–1999 oil industry 

environment, many smaller exploration companies lacked the resources of a pool of expert exploration 

personnel.  Downsizing, low oil prices, and scarcity of exploration funds have also affected larger 

companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are 

depleted.  The pool of experts is much reduced today.  The FEE Tool will benefit a diverse group in the 

U.S., leading to a more efficient use of scarce funds, and possibly decreasing dependence on foreign oil and 

lower product prices for consumers. 

 This fourth of five annual reports contains a summary of progress to date, problems encountered, 

plans for the next year, and an assessment of the prospects for future progress.  The emphasis during the 

April 2002 through March 2003 period was directed toward Silurian-Devonian geology, development of 

rules for the fuzzy system, and on-line software. 
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Executive Summary and Objectives 
 

Incomplete or sparse information on types of data such as geologic or formation 

characteristics introduces a high level of risk for oil exploration and development 

projects.  “Expert" systems developed and used in several disciplines and industries have 

demonstrated beneficial results.  A state-of-the-art exploration “expert” tool, relying on a 

computerized database and computer maps generated by neural networks, is being 

developed through the use of “fuzzy” logic, a relatively new mathematical treatment of 

imprecise or non-explicit parameters and values.  Oil prospecting risk can be reduced 

with the use of a properly developed and validated “Fuzzy Expert Exploration (FEE) 

Tool.” 

This FEE Tool can be beneficial in many regions of the U.S. by enabling risk 

reduction in oil and gas prospecting as well as decreased prospecting and development 

costs.  In the 1998–1999 oil industry environment, many smaller exploration companies 

lacked the resources of a pool of expert exploration personnel.  Downsizing, low oil 

prices, and scarcity of exploration funds have also affected larger companies, and will, 

with time, affect the end users of oil industry products in the U.S. as reserves are 

depleted.  The pool of experts is much reduced today.  The FEE Tool will benefit a 

diverse group in the U.S., leading to a more efficient use of scarce funds, and possibly 

decreasing dependence on foreign oil and lower product prices for consumers. 

 This fourth of five annual reports contains a summary of progress to date, 

problems encountered, plans for the next year, and an assessment of the prospects for 

future progress.  The emphasis during the April 2002 through March 2003 period was 

directed toward Silurian-Devonian geology, development of rules for the fuzzy system, 

and on-line software. 
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Introduction 

In the first four years of the Fee Tool Project, an immense amount of data on the 

Delaware Basin has been accumulated.  Data on geology, structure, production, regional 

information such as gravity as well as local data, such as well logs.  This data, organized 

and cataloged into several online databases, is available for the Expert System and users 

as needed and as appropriate in analyzing production potential.  A preliminary map of 

production potential for the basin has been generated and stands ready to be modified by 

rules defined both by human experts in exploring the Delaware basin, and by statistical 

rules defined by the database.  We have generated a number of new and useful tools and 

technologies to support these efforts, including online useable interfaces for neural 

network analysis (PredictOnline), ranking of potential inputs using fuzzy logic 

(FuzzyOnline), a preliminary Expert System able to make rudimentary drilling decisions, 

and a web interface for accessing the databases and Expert System software.  

In the next year we will provide a finished Expert System that will run remotely 

from a browser on nearly any computer.  The system will be able to aid in development 

and drilling decisions for both the Brushy Canyon and Devonian plays by providing 

readily accessible public information.  An interactive and customizable questionnaire 

coupled with relevant analyses will produce an "Expert" opinion of a prospect in a short 

time to enhance the work of a human explorationist.  Though this on-line system will be 

secure, many users will feel more comfortable if an off-line version of the software is 

also available.  Given time, an effort will be made to produce a stand-alone version.  
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Progress and Discussion of Results 

Computational Intelligence 

Regional Data Analysis 

A key component to this study is the analysis of the regional data, not only to 

provide baseline data to correlate with production potential, but also to provide a source 

of heuristic rules for the expert system.  Four major categories of regional data (gravity, 

aeromagnetic, structure, and thickness were selected, compiled and finalized during the 

previous year.  Regional gravity surveys cover the entire area of the Delaware basin and 

have been compiled with an accuracy of a few milligals. The survey measurements are on 

the order of a few thousand feet apart, but sample point locations are highly variable as 

gravity is measured in easily benchmarked locations, such as along roadways. Gravity 

measures variations in density and tends to highlight large-scale regional structures in 

basement materials and if structure has an impact on maturation, migration or trapping of 

hydrocarbons in the basin useful information can be obtained.   

Regional aeromagnetic data, primarily collected via over-flights, with one-mile 

spacing, re-gridded to 0.296 miles longitude and 0.346 miles latitude, also exists for the 

region.  Aeromagnetic data highlights contrasts in the magnetic susceptibility between 

rocks and can help indicate basement blocks, large-scale faults, and possible large-scale 

alluvial deposits.   

The structure of the lower Brushy Canyon was picked on 700 wells in the basin 

covering a geographically large area.  Large-scale maps of structure covering the region 

were constructed with a kriging algorithm using this data.  Structure can play more than 

one role in trapping and migration of hydrocarbons; two potentially helpful attributes 
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used in this study are structural highs and flexures that may be caused by subsurface 

faulting.   

Finally, the wells used to compute structure were used to generate an isopach map 

for the Brushy Canyon in the region.  Thickness may indicate areas of greater potential 

production and also can indicate pinch-outs and other nonstructural features that may 

form hydrocarbon migration pathways or traps. 

A number of attributes were calculated from the four regional data types. These 

attributes are first and second derivatives along latitude and longitude; dip azimuth and 

magnitudes; and curvature azimuths and magnitudes.  These values were computed to 

expose finer scale features in the basic data types that might be useful for correlating with 

a production indicator.  A total of 36 maps were generated using the Zmap tool of 

Landmark Graphics Release 98 plus interpretation package.  

Each of these maps was gridded at a scale of 1320-ft (quarter section) because 

that is the regulatory spacing for wells in the Brushy Canyon in New Mexico.  The 

gridded data was exported and loaded into the project production database.  Our current 

production database is a subset of the ONGARD database (courtesy of the SW PTTC) 

containing production information on all New Mexico wells.  In this database we have 

also identified Brushy Canyon wells and using grid locations from the Zmap maps we 

were able to correlate producing wells with grid numbers.  The gridding algorithm we 

selected is based on a 40 ac minimum well spacing and thus consists of points 1320 ft 

apart.  This gridded data set essentially allows regressions to be formed using the 

production data as control points (training and testing) and the attribute data as variables. 

Regressions formed in this manner can be used to predict production in all 60,478 40-ac 

bins in the basin. 
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There are two primary considerations in forming regressions. The first involves 

the quality of the data being predicted with the generated regression model.  To address 

this, we focused initially on overall data quality and tried to filter the data to improve the 

likelihood of obtaining robust correlations. The second consideration deals with the 

choice of attributes or variables that will be used in forming the regression model.  An 

optional consideration is the type of models used: linear models (least squares regression) 

or more complicated non-linear solutions such as polynomial regressions or neural 

networks.   

For the filtering attempt an average of the first 12 producing months’ 

Hydrocarbon Equivalent (BO + MCF/6) calculated at each well was chosen as the data to 

be modeled.  Figure 1 shows a histogram of average hydrocarbon equivalent produced 

per month in barrels for the 2257 identified Brushy Canyon wells.  The trend of the 

histogram is approximately an exponential decay function.  A more ideal data distribution 

that simplifies modeling is data that follows a Gaussian distribution.  The production data 

was conditioned with a log10 filter; Fig. 2 shows a histogram of the production indicator 

after log10 conversion.  The bulk of the data now follows a roughly Gaussian distribution 

with some notable outliers on the low end.  It may be desirable to remove outliers from 

the training data if those data are not significant to the solution.  In this case, a  cutoff of 

50 barrels of oil per month was applied to remove the outliers.  The data can then be 

unfiltered once the outliers are removed and used as normal in regression analysis as the 

filtered data is well conditioned for either linear or non-linear regression analyses.  

However, the 2257-well data set was found to be unwieldy and time-consuming to run 

regression experiments with and instead we used a smaller subset of the wells that had 

been examined closely, but not filtered, for geologic data as a training data set.    
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For the second consideration, choice of attributes, there are a number of ways to 

determine which of a set of inputs (attributes) would best be used to form a regression for 

a particular output.  Simply crossplotting each input against the output can give an 

indication of the quality of potential linear models, but more complicated schemes are 

required for nonlinear problems.  The next subtopic deals with the software developed to 

address this concern. 

 

Fuzzy Ranking Revisited 

A fuzzy curve solution to the problem of identifying important neural network 

input variables from a large sparse database was discussed in the second annual report.  

This first attempt at fuzzy ranking required a certain expertise to use effectively; for this 

project we prefer to use as much automated software as possible, to avoid variances 

between interpretive styles.  For completeness this "first stage" fuzzy ranking concept is 

reviewed. In a later section this initial fuzzy ranking concept is expanded and developed 

into useable, fully automated software. 

First stage fuzzy ranking. There are a number of ways to select the best set of 

inputs to be used to form a regression for a particular output.  Simply crossplotting each 

input against the output can give an indication of the quality of linear or multiple linear 

regression models that could be formed.  Software was developed based on a single stage 

fuzzy-ranking algorithm to select inputs best suited for predicting the desired output.  The 

global algorithm statistically determines how well a particular input could resolve a 

particular output with respect to any number of other inputs using fuzzy curve analysis. 

To illustrate the technique a simple example is given. Consider a set of random 

numbers in the range {0,1} using x={xi}, i=1,2,…,99, and xi=0.01*i, and plot each value 



                                                                                                                                         7

(yI= Random(xi)).  Next add a simple trend to the random data (yi=(xi)^0.5+Random (xi)) 

and plot those values. For each data (xi, yi) a “fuzzy” membership function, Fi(x), is 

defined using the following relationship: 

i
i

i y
b

xxxF *)))(exp()( 2−−=  …………………………………..eq. 1 

 
Sample fuzzy membership functions are shown in Figs. 3 and 4. Here, b=0.1, 

since b is typically taken as about 10% of the length of the input interval of xi.  A fuzzy 

curve was constructed using a summation of all individual fuzzy membership functions in 

(xi, yi), and this final curve can prioritize a set of inputs for linear or non-linear 

regressions. The fuzzy curve function FC(x) is defined below:  

 
where N is the size of the data set or the total number of fuzzy membership 

functions.  Figure 5 shows the curves for the data sets shown in Figs. 3 and 4. This simple 

example illustrates the ability of the fuzzy ranking approach to screen apparently random 

data for obscure trends such as the correlation between seismic attributes and reservoir 

properties (Balch et al., 1999). 

Second stage fuzzy ranking. More information is needed to advance this analysis 

from the art of reading these fuzzy curves to a more robust and systematic elimination of 

less useful inputs.  Therefore, work began on a two-stage fuzzy ranking code (Lin et al., 

1998).  The two-stage fuzzy ranking (TSFR) has two improvements: 1) Reduction of 

input variable space through random characterization and 2) Setting hard rules for 

selection of best-input variables. TSFR introduces second stage fuzzy curves, with first 

and second stage fuzzy surfaces that select the most important and independent input 
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variables for modeling, while removing the input variables that show random 

characteristics. 

TSFR uses first and second stage fuzzy curves to generate the fuzzy curve 

performance index (Pc): 

2

1

1 stage

stage
c P

P
P

+
= . …………………………………………………………eq. 3 

 
With the addition of a known random variable into the input space the Pc is 

normalized by the random Pc,R to produce the normalized fuzzy curve performance index 

(Pc,N): 

 
Rc

c
Nc P

P
P

,
, = ………………………………………………………………eq. 4 

 
The input variable with the smallest Pc,N value is the most important variable. 

Input variables with Pc,N greater than one are eliminated from the selection process. Once 

the most important variable is determined fuzzy surface analysis is performed. 

Analogously, for fuzzy surfaces there exists a performance index using the first 

and second stage fuzzy surfaces (Ps): 

2

1

1 stage

stage
s P

P
P

+
= …………………………………………………………eq. 5 

 
A similar normalization procedure produces the normalized fuzzy surface 

performance index (Ps,N): 

 
Rs

s
Ns P

PP
,

, = ……………………………………………………………….eq. 6 
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Iteratively, the input variable with the smallest Ps,N is considered the next most 

important and independent input. In an iterative process, the input variables with Ps,N's 

above 1.0 are eliminated from selection process. The fuzzy surface analysis continues 

until no input variables remain. In this way, two-stage fuzzy ranking can be used to 

automatically and quickly identify the important, independent inputs needed to model the 

system of interest. 

Case study. For this study each of the 36 data and data attributes calculated and 

loaded into the database were analyzed using fuzzy ranking (Lin and Cunningham, 1995). 

It is both statistically dangerous and not computationally feasible to use all 36 attributes 

to form a regression relationship, so two-stage fuzzy ranking software was used to select 

attributes best suited for predicting production indicators.  The algorithm statistically 

determines how well a particular input (regional data or data attribute), using fuzzy curve 

analysis, could resolve a particular output (production indicator) with respect to any 

number of other inputs. Using the newly refined fuzzy ranking tool each data attribute 

was ranked for its ability to predict the production potential at these well locations.  

Figure 6 shows the progressive elimination of non-unique and irrelevant data.  The four 

best attributes selected were dip azimuth of gravity, second latitude derivative of 

thickness, longitude derivative of gravity, and longitude derivative of structure, as shown 

in Table I.  

Table 1.  Variables Selected as Optimal 
 

RANKING VARIABLE PC/PCR 
1 6 0.8584718 
2 32 0.8490006 
3 2 0.8779765 
4 20 0.88185640 
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Currently an on-line implementation of this software has been developed and is 

operating in-house while undergoing testing prior to making it globally available via the 

web. 

 

PredictOnline Webware Revisited 

For in-house neural network analysis, a web-based software, PredictOnline, was 

developed.  More precisely, it is a web-based interface to SNNS—Stuttgart Neural 

Network Simulator developed at the University of Stuttgart, Germany and the University 

of Tübingen, Germany. [*]  SNNS is a comprehensive neural network package featuring 

a full GUI. It can also be used without its GUI, using a special SNNS program called 

batchman. This program is the engine of PredictOnline. 

Since PredictOnline is ``web-based'' it means that end users can run the program 

through their web browsers on local computers connected to the Internet. The 

computation will be performed remotely on our server machines. Thus, the users are not 

limited by the speed of their local computers, as neural network training can be 

computationally demanding. 

 

Multivariate Regression 

Using PredictOnline, a regression relationship was formed between the four fuzzy 

ranked inputs (Table 1) and the average first month’s production for the first year at each 

of 520 carefully examined Delaware wells.  When forming regressions, it is best to hold 

out a randomly selected sample of the data for testing.  This data is used for testing the 

ability of the regression to accurately predict data not used in forming the regression.  For 

this study a 520 well subset of the available 2434 Brushy Canyon wells in the basin was 
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used to train the neural network. These 520 wells were selected because they were 

verified to have produced only from lower Brushy Canyon, and because they included 

dry holes in which a completion effort was made to generate production. In addition, they 

were distributed fairly evenly across the basin.  Of these 520 wells, 466 were used to 

form the regression while 54 were held out for blind testing.  A 4-10-10-10-1 neural 

network with 250 weights provided an excellent solution with a 2:1 ratio of data to 

weights, CC=0.90 for the training data, and CC=0.81 for the test data. For simplicity, 

BOPM (average barrels of oil per month expected in first year) at all 60478 40ac-bins in 

the basin were predicted using this model, including nearly 2000 other wells with Brushy 

Canyon production.  Training and testing cross-plots are shown in Figs. 7 and 8, 

respectively. 

 

Results 

The calculated BOPM for each 40-ac bin in the New Mexico portion of the 

Delaware basin, Brushy Canyon formation was used to generate a map (Fig. 9) to 

highlight potential areas of exploration interest.  Neural network analysis necessarily 

results in a non-crisp solution; examination of the cross-plots in Figs. 7 and 8 

demonstrate that there is some possible error in the maps, though in general the high 

cross-correlation means the overall fit is good.  Therefore it would be inappropriate to 

expect that any given drilling locations would produce exactly as mapped, as there are 

simply too many variables and the algorithm is designed to form generalized solutions, as 

seen in Fig. 10.   The objective of this project is to use this potential oil rate map as the 

basis for an expert system that will then quantify the risk associated with each prospect 

by answering questions often posed by human experts exploring in the Brushy Canyon, 
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as well as questions posed by statistical analyses of the data itself.   The Map and 

associated database also provides a rich source of valuable heuristic rules for the expert 

system. 

 
Expert System Rules  
 

Basic design changes. The original design entailed the use of a single massive 

expert system to make decisions about a prospect's potential as a well site, Fig. 11.  As 

we have investigated the process of designing and running expert systems, it has become 

apparent that a multi-tiered system, with components running in parallel, would be both 

more efficient and more versatile in actual usage. Figure 12 shows the current design 

structure for implementing and accessing the various expert systems needed to evaluate 

production potential.  The new design is more efficient for several reasons. First, it will 

be faster to code the rules and the resulting code will run faster.  Second, parallel expert 

systems will allow the user to consider only the data types they feel are most influential, 

and ease customization to their personal philosophies.  Third, database entry, IO, from 

the system, will occur in numerous small packets instead of large chunks and extraneous 

data transfers will be reduced. 

Implementation.  Figure 12 shows the basic layout of the FEE Tool project.  Tier 

1 is a user interface that allows selection of an area or prospect of interest.  Users can 

select the types of data they are interested in, and can review that data online with their 

browsers. Tier 2 in Fig. 12 represents the access of the user’s browser with our online 

database.  Advanced users can manipulate the transferred data for personal use.  This data 

will reside on the user’s computer and will not be generally available or affect the 

permanent database in any way.  This allows the use of proprietary information with the 

system.  Once the data is accepted or modified, the next step is to run the appropriate 
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expert systems using the available data to answer heuristic questions and accepting user 

input to answer other questions that “experts” tend to ask when evaluating Brushy 

Canyon prospects.  In Tier 3, there are five expert systems that can be applied based on 

user wishes. These address Regional Indications, Trap Assessment, Formation 

Assessment, Improved Recovery, and Oil Price.  Specifics and starting rules for these five 

systems are discussed below.  Some users may elect to not factor in certain aspects, or to 

hard wire their own values for future oil price. 

Types of rules. Two main types of rules are implemented.  Heuristic rules are 

derived directly from our analysis of regional and local data.  These rules are interpreted 

from the data using algorithms, such as distance relationships, and will be based on 

publicly available data.  Heuristic rules include elements like proximity of mature source 

rocks, structural pinchouts, nearest producing well, and formation thickness.  Expert rules 

will come from interviews with Delaware explorationists and will mimic questions they 

ask when evaluating prospects. Expert rules may include information about position on 

structure, porosity or permeability ranges, and production at analogous sites. In addition, 

heuristic rules can be replaced if the user has more detailed knowledge than is publicly 

available.  Both types of rules may be fuzzy, as appropriate.  Generally, for sites with less 

information heuristic rules will be more important and will provide a first estimate of 

production potential.  For sites with sufficient specific or proprietary information Expert 

rules will be dominant. 

 Heuristic rules. One source of rules for the Fuzzy Expert Exploration Tool is 

statistical analyses of gridded data in our databases.  Currently the regional database has 

four basic data types for the Brushy Canyon: Gravity, Aeromagnetic, Structure, and 

Thickness. An additional eight attributes for each of those four basic types has been 



                                                                                                                                         14

calculated: DX, DY, DX2, DY2, dip azimuth, dip magnitude, curvature azimuth, and 

curvature magnitude.  Additional data include location information in latitude/longitude, 

oilfield X-Y coordinate systems, and a numeric grid number that also functions as a 

database key.  Additionally, in grids that contain a Brushy Canyon well, there is relevant 

production information for oil, water, and gas.  One factor that complicates working with 

the databases is the fact that the grid is not square: rather, it runs linearly from north to 

south increasing by integer amounts from the top of the study area to the bottom.  The 

grid then steps over to the next “column.”  Each gridpoint is separated by a physical 

distance of 1320 ft that corresponds to an area of 40 acres contained by four adjacent 

(squared) gridpoints.  The gridding system looks something like this: 

                                                         08 13 18 

                                                    04 09 14 19 23 

                                               01 05 10 15 20 24 27 

                                               02 06 11 16 21 25 28  

                                               03 07 12 17 22 26 29  

 The primary use of the regional database thus far has been to organize the 

regional data, determine which bins contain production information, and then to calculate 

a “first guess” map of production potential using the data with the highest fuzzy rank to 

predict production.  With this “first guess” map we enter a new phase, where we want to 

modify the probability of a successful well prediction using the “first guess” as a 

baseline.  To do this we are using an expert system programmed in Jess and designed to 

ask the same sort of questions a human explorationist would, when looking at a prospect.  

Is it high on structure?  Where is it in the basin? Are there stratigraphic traps; is it close to 

other producing wells?  A lot of these questions can be answered directly from the 
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database itself, which speeds the process of examining a prospect.  As a bonus, gridded 

heuristic answers (e.g. closeness to nearest producing well) also provide us with a way to 

quantify the value of these answers using fuzzy ranking.  

Simple heuristic rules. The simplest questions to ask of the database are related to 

distances.  How close is the nearest producing well?  How close to structural highs or 

lows? Where on structure is the location?  Questions about the thickness and existence of 

potential pay zones at the location of interest can also be answered in this manner.  The 

following new data is being generated for the database: 

• Distance to nearest oil show 

• Distance to nearest production 

• Distance to nearest production >500 

• Distance to nearest production >1000 

• Distance to nearest production >1500 

• Distance to nearest production >2000 etc 

• Nearness to structural high/low 

• Where is the prospect on structure?  Scale between local minima and maxima (0–

100) 

• Distance to nearest pinchout (structural trap) defined by sand thickness. 

• Direction of nearest pinchout (updip downdip, across trend) 

• Relative sandstone thickness (% distance between local maxima and minima) 

• Sandstone thickness relative to nearest producing well (greater or lessser) 

• What part of the basin does the prospect lie in? (defined as distance from key 

points?)  

  -West edge 
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  -Center 

  -North edge 

  -East edge 

 

Scoring of rules. Each of the subexpert systems will assign a numerical score 

based on the answers to individual questions.  The score can come in several varieties: 

binary, or off/on flagging, assigned percentage values, or fuzzy-based distributions.  Most 

rules in the subsystems will likely be assigned numerical values based on analysis of 

training data or fuzzy distributions based on data analysis.  When combined to form the 

global relationship, fuzzy distributions or other functions will be applied. 

Grading heuristic rules. One function of the new fuzzy ranking software is that it 

numerically grades, and sorts by uniqueness.  We can now take suites of data, compare 

them to some desired quantity, and rapidly determine which are better (numerically 

ranked higher), and which add no new information (uniqueness test).  Suites of heuristic 

rules can be compared to production and a numeric grade assigned based on the fuzzy 

rank and level of uniqueness. 

Trap assessment rules. Initial trap assessment rules as programmed into the initial 

system are graphically illustrated in Figs. 13–15 in flowchart form. 

Formation assessment rules. Initial source rock assessment rules as programmed 

into the initial system are graphically illustrated in Figs. 16–20 in flowchart form. 

Regional indication rules. Initial regional assessment rules as programmed into 

the initial system are graphically illustrated in Figs. 21–22 in flowchart form. 

Improved recovery rules. As the Brushy Canyon sands are a relatively new play, 

little information is available on improving existing production.  Also, as the play is 
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believed by some to be water-wet, waterfloods are high risk anywhere in the basin.  

Flooding with CO2 is a possibility for advanced recovery techniques, but Brushy Canyon 

CO2 field application data is scarce.  Horizontal wells appear to be the most likely 

candidate technology for improved recovery.   

Oil price rules. Oil price will be available in three main formats.  

• User entered: the user enters a fixed price per barrel based on internal 

projections or company philosophy.   

• Predicted by neural network: a neural network is being developed to 

project the price of oil using the futures markets.  The status of the oil price 

predictive method is discussed later in the report.   

• Standard posted price for the day: the calculation is made is the third 

option.   

 

Enhancements and reductions of rule values. There are many methods available 

to enhance or reduce the estimates. The method used at this stage of development is to 

enhance an estimate by taking roots as all values are normalized between Zero and One. 

The cube root is used to strongly enhance the value, and the square root is used to 

moderately enhance the value. To reduce the estimate, it is raised to the second power 

and to strongly reduce, it is raised to the third power. In the case of the thickness 

modification, a variation is used in which the enhancements are smaller, created by 

taking the 1.25 root and the 1.5 root instead of the square and cube root. 

 

Statistical analysis of rules.  Statistical analyses of the data are useful in 

determining data-based estimates of ranges to be used.  For example, in order to 
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determine cutoff values for determining if values such as dip or thickness are significant 

enough to result in an enhancement or reduction of the estimate, a histogram of the 

variable in question can be drawn, and tests for normality  performed. If the distribution 

of the variable seems close to normal, cutoff values can then be determined by taking the 

mean, plus or minus a standard deviation, for a moderate enhancement and reduction, and 

the mean, plus or minus two standard deviations. for a strong enhancement.  

For example, when we observed thickness data, the data appeared to be skewed to 

the right (Figure 23). This caused the majority of the variables to be enhanced, as can  be 

seen by looking at the distribution of the differences in the initial value and the final 

value after the first branch enhancements are completed (Figure 24).  

The difference between the initial value and final value is one tool to evaluate 

how the expert system is performing. In the first trial, all enhancements and reductions 

were accomplished by using the square and cube roots and the second and third powers 

respectively. When the study of the differences between initial value and final value 

showed that the majority of final estimates were higher than the corresponding initial 

estimate for every grid-point, the thickness enhancement was found to be the cause. The 

goal is to have a symmetric distribution when looking at the differences. In other words, 

if prospect potential is indeed distributed approximately normally, the mean, median and 

mode difference should be zero. To achieve this distribution of the differences, a new 

method of enhancement based on the thickness was used as discussed above.   

This is an example of how statistical analysis of the raw data itself may aid in 

forming a robust system, when combined with Expert-derived rules. 
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Numerical Results from Non-Numerical Rules. 
 

Introduction. Fuzzy set theory is a mathematical approach for working with 

imprecise data and measurements. In exploration, relevant data such as porosity is 

sometimes approximated or interpolated from data collected at nearby wells.  This 

example shows how principles of fuzzy set theory are used along with expert opinions to 

compute a value for a well’s potential. The steps involved are: determining the input 

parameters and obtaining approximate numerical values, developing the linguistic values, 

fuzzifying the input parameters, firing the appropriate expert defined rules, and 

defuzzification of the output parameter. Each of these steps is discussed in detail below. 

Input parameters. In this example, two variables will be used as input parameters. 

The variables, total organic carbon (T) and porosity (Ф) are variables for which it is 

sometimes difficult to get a precise value, and measurements may have to be used from 

nearby wells. For each of these variables, linguistic values will be defined based on the 

following criteria: 

 
T=Total Organic Carbon 
T: ZERO if 0 ≤ T < 0.5 
T: LOW if 0.5 ≤ T < 1.0  
T: MEDIUM if 1.0 ≤ T < 1.5 
T: HIGH if 1.5 ≤ T  
 
Ф =Porosity (percentage) 
Ф: ZERO if 0 ≤ P< 5 
Ф: LOW if 5 ≤ P< 10  
Ф: MEDIUM if 10 ≤ P< 15 
Ф: HIGH if 15 ≤ P 
 

For this example, 0.72 will be used as the best available value for TOC, and 13% 

will be used for the best available porosity. These two inputs will be used to develop a 

value for R, the prospect potential on a scale of 1 to 100.  
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Fuzzification of input parameters. The next step in the process is to “fuzzify” the 

input parameters. In order to do this, we will define fuzzy membership values for each of 

the sets; zero, low, medium and high, using a set diagram called a fuzzy membership 

curve that graphically defines each of the linguistic values. There are many curves that 

can be used in this process (and a suite was tested and reported later in this report) but the 

simplest is a trapezoidal graph, which we will use here for purposes of illustration. The 

process is repeated for each of the input parameters. Figure 25 illustrates the process for 

the variable T. The value of 0.72 is plotted on the x-axis, corresponding to the following 

values of membership in each of the linguistic sets: 

 
T(Zero)=0 
T(Low)=56 
T(Medium)=44 
T(High)=0 
 

The process is repeated for the porosity (Figure 26), using the best value of 13%. 
 
Φ(Zero)=0 
Φ(Low)=0 
Φ(Medium)=40 
Φ(High)=60 
 
 
 

Rules. Once the input parameters have been fuzzified, the linguistic sets with non-

zero membership can be used to fire a set of rules determined by an expert. The rules for 

this example are 

1. If T is zero then R is zero 
2. If Φ is zero then R is zero 
3. If T is low and Φ is low or medium, then R is low 
4. If T is low and Φ is high then R is medium 
5. If T is medium and Φ is low then R is low 
6. If T is medium and Φ is medium or high, then R is medium 
7. If T is high and Φ is low or medium then R is medium 
8. If T is high and Φ is high then R is high 
 



                                                                                                                                         21

We use the non-zero memberships from the fuzzification process to determine 

that rules 3, 4 and 6 are applicable.  

Defuzzification. The next step in the process is to determine the strength of each 

of the fired rules using the set theory operators min for “and” and max for “or”. 

Beginning with rule 3, we have T low with membership value of 56, Φ low with 

membership value of 0 and Φ medium with membership value of 40. So, Φ is low or 

medium with a membership value of 40. Rule 3 is then “fired” with a strength of 40, 

using min (56,40) to arrive at this value.  

Following this process for the two other rules, rule 4 and 6, we have rule 4 fired 

with a strength of 56 and rule 6 fired with a strength of 44. Rule 4 and 6, however, both 

result in R being medium, so we combine the two using the max operator. In the final 

results, R is medium with strength of 56 and low with strength of 40.  

To obtain a numerical value for R, on a scale of 1 to 100, we consider the median 

values of 10 for low, 50 for medium and 90 for high. Then using the strengths computed 

above, we calculate R as follows: 

R = 0.40*(10)+0.56*(50) = 32 
 
 

This is a simple example of how the fuzzy set theory approach can be used to 

determine potential. In a more complex example, multiple input parameters may be used, 

and the curves used to determine the memberships may be more complex than the 

trapezoidal curves used here. The basic ideas are the same, however, and can be used to 

build the framework for computer codes that compute potential based on rules written by 

experts in the field.  
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Initial application of the Expert System 

The Expert System as a whole can be divided into four subsystems (Figure 12).  

Each of these systems asks questions that an Expert would ask about that sub-topic: 

Regional Indication, Trap Assessment, Formation Assessment, and Enhanced Recovery. 

Each subprocess results in numerical values for risk for that component.  However, an 

overall evaluation is also required. During the overall evaluation the user’s value for oil 

price, or a projection, is also factored in using a weighted sum of the risk components. 

 

Risk = [r(R)(W) + r(T)(X) + r(F)(Y) + r(E)(Z)] * r(O) 

 

where W + X + Y + Z = 100 %, and 
 
where r(O) is a scaling factor based on Oil Price. 
 
 

Some thought has gone into the evaluation of these final risk assessment values 

{W,X,Y,Z}, which are critical in weighting each factor before generating a final risk 

estimate; in these, expert opinion will weigh heavily. Each of the subsystems is also 

being evaluated for the best method of selecting and defining membership functions for 

key components.  This is the part of the expert system that allows the use of imprecise or 

fuzzy data, such as “low porosity” or “moderate thickness”.  Several schemes for 

determining the best forms to use for these membership functions have been studied. This 

initial assessment is based in part on statistics of the data and in part on expert opinion.  

The thickness of pay sand ranges are shown below by way of illustration: 

• Zero (sub-marginal, or no pay sands) 

• Low (Pay sand thickness is defined as marginal by experts) 

• Medium (This range tends to provide successful wells) 
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• High (Better than average sand thickness) 

 

All data analyzed within the expert system are normalized to simplify computation; 

additionally, to start, ranges were selected using the assumption that the distribution of 

thicknesses was normal.   

 

• Zero  T<0.2 

• Low  0.2≤T<0.5 

• Medium 0.5≤T<0.8 

• High  T≥0.8 

 

Matlab provides a number of membership functions, so several were selected to test 

the process. The first function that was considered for the membership curves is the 

“trapmf” function. In order to have the memberships functions allow for membership in 

more than one range (partly high, partly medium for example), a certain amount of 

overlap on the ranges is desired. Thus the ranges were redefined as follows: 

 

• Zero  T<0.225 

• Low  0.175≤T<0.525 

• Medium 0.475≤T<0.825 

• High  T≥0.775 

 

Using these ranges the membership curves shown in Figure 27 were generated using 

a composite set of Trap and Formation (source) rules coupled with Regional Indications 
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to predict risk.  With these functions prepared, it is then possible to compute the values 

for rules, and values for a number of circumstances to test the performance of various 

membership functions. 

 The framing of rules was done based on the weights of the inputs. In this 

particular case since the first two inputs were combined as one input, more weight was 

given to that particular input. Finally, for this highly simplified evaluation, the ranges for 

rules are defined in Table 2, below, and graphically illustrated in Figure 28: 

Table 2. Ranges for Rules 
  

Trap and Source Regional (NN) Risk (output) 
Zero Zero Zero 
Zero Low Zero 
Zero Medium Low 
Zero High Low 
Low Zero Low 
Low Low Low 
Low Medium Low 
Low High Medium 
Medium Zero Low 
Medium Low Medium 
Medium Medium Medium 
Medium High Medium 
High Zero Medium 
High Low Medium 
High Medium High 
High High High 

 
 
The numerical, or defuzzified values computed using this set of curves is shown in Table 
3, below. 
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Table 3. Numerical Values Generated Using Trap and Source Rules 
 

Trap & Source Region Risk 
0.5 0.5 0.5 
0.142 0.5 0.254 
0.757 0.5 0.65 
0.95 0.5 0.746 
0.95 0.932 0.902 
0.95 0.777 0.901 
0.95 0.332 0.65 
0.445 0.332 0.35 
0.445 0.541 0.35 
0.445 0.632 0.35 

 
 

We can see in the last three rows of Table 3 that, though the regional input is 

being varied, keeping trap and source input constant results in no change in the output. 

This is undesirable and rules out the membership curves in Figure 27. 

The next set of functions examined were the “gaussmf” functions shown in Figure 

29, determined using the same parameters as the first trial. Figure 30 shows the 

membership curves using the “gauss2mf” function for the zero and high parameters in 

both the inputs as well as the output.  Finally, the “Zmf “ function was used for the Zero 

parameter and the “smf” function for the high parameter in both the inputs as well as the 

output, with membership curves shown in Figure 31.  Table 4 summarizes the results of 

this trial. 
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Table 4. Results of “gaussmf” Function Trial 

TRAP REGION gussmf gauss2mf zmf, smf 
0.5 0.5 0.545 0.545 0.545 
0.28 0.5 0.331 0.335 0.32 
0.913 0.5 0.775 0.772 0.775 
0.913 0.677 0.923 0.936 0.896 
0.913 0.814 0.884 0.899 0.887 
0.913 0.895 0.918 0.93 0.898 
0.913 0.968 0.923 0.936 0.898 
0.913 0.123 0.647 0.647 0.648 
0.0413 0.123 0.087 0.0745 0.102 
0.124 0.123 0.101 0.0966 0.107 
 
 

Analyzing Table 4 shows that in the case of the fourth and fifth inputs, the trap 

input remains unchanged; while only the region input increases, the output decreases. As  

we change the membership functions, this trend continues. This shows the significance of 

the membership curves, in that they can be used to fine-tune responses to various rules. 

 
The next step was to apply the methodology to some actual project data.  Figure 

23 shows a histogram distribution of thickness data, demonstrating an approximately 

normal distribution (though skewed somewhat).  In this trial the idea was to build a 

succession of curves that accurately reflected the value of thickness as the membership 

functions moved from zero to high. 

In order to implement an overall function that demonstrated the characteristics of 

the actual curve, the “dsinmf” and “psinmf” functions in Matlab were used for both low 

and medium and the “zmf” and “smf” functions for the zero and high portions of the 

distribution.  Figure 32 shows the fuzzy membership functions. 
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For comparison, the similar “pimf” function was applied to the low and medium 

parameters and the “zmf” and “smf” functions for the zero and high parameters in a 

separate test case (Figure 33). 

Table 5 shows the numerical results from these two sets of fuzzy membership 

functions.  A new problem developed, as inputs 2 and 3 of  the region input were being 

varied while the trap input was held constant.  There  was no difference in the output for 

the range of 0.555 to 0.8 in case of the region ional input. Another observation was that 

decreasing the trap input values while leaving the region ional input values constant 

resulted in an increasing when the “psinmf” and “dsinmf” functions were used. Of these 

two tests, the “pimf” function appears to provide the most statistically sound results. 

Table 5. Numerical Results from  Psinmf/dsinmf, pimf Functions 
 
TRAP REGION Psinmf / dsinmf pimf 
0.555 0.5 0.575 0.591 
0.5 0.555 0.524 0.591 
0.5 0.8 0.524 0.601 
0.5 0.85 0.57 0.593 
0.454 0.85 0.583 0.613 
0.427 0.85 0.585 0.607 
0.243 0.85 0.587 0.54 
0.95 0.95 0.878 0.898 
0.821 0.95 0.773 0.89 
0.821 0.0955 0.556 0.597 
 
 
 Based on expert knowledge, however, it was already known what the general 

form of the output should be, and while these cases were closer, they were not an 

accurate fit in certain ranges. Further refinements were made using “sin” curves for the 

Low and Medium membership curves while leaving the zero and high parameter curves 

defined by “zmf” and “smf” curves.  Further refinements were made by shifting the range 
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of the High parameter to 0.75 from 0.70, and by changing adjusting the angle of the sin 

curve to 50, then 30.  Figure 34 shows the resulting suite of membership curves. 

Table 6. Results from sin Functions 
 

TRAP REGION sinmf sinmf sinmf sinmf 
0.5 0.5 0.668 0.668 0.676 0.674 
0.28 0.5 0.605 0.605 0.535 0.598 
0.913 0.5 0.668 0.668 0.676 0.674 
0.913 0.677 0.671 0.671 0.676 0.675 
0.913 0.814 0.671 0.671 0.676 0.675 
0.913 0.895 0.671 0.671 0.676 0.675 
0.913 0.968 0.671 0.671 0.676 0.675 
0.913 0.123 0.669 0.669 0.675 0.673 
0.0413 0.123 0.106 0.106 0.102 0.102 
0.124 0.123 0.122 0.122 0.102 0.104 

 

When the regional parameter is changed without varying the trap for a range of 

0.677 to 0.968, the results do not change at all.  Several more tests were conducted, 

varying the values of the various ranges (Zero, Low, Medium, and High) to further 

explore available functions and ranges, but ultimately a sample of real prospect 

evaluations will have to be computed and then statistically examined to recognize the 

final shape the memberships curves require.  

 
WEB-Based Database Management System (WDMS) 
 
 A key component to the success of this project is the development of a dynamic 

web-accessible database for storing, managing, accessing, and analyzing data, including 

the development of heuristic fuzzy rules and operating the inference engine.  As the data 

files can be quite large, the system must be efficient, and usable by persons with varying 

degrees of computer literacy. 
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Several important advances in the web system have taken place in this semi-

annual period. Key data definitions, data flows, data processing methods and user 

interfaces with WDMS have all progressed.   A new version of PredictOnline has been 

coded, user management software has been developed and debugged, and a beta version 

of a two-stage fuzzy ranking code, FuzzyOnline, utilizing the more advanced software, 

has been developed.          

Considerations of security for both users and potentially proprietary data, as well 

as for the integrity of the databases, led to the development of Web-Based Account 

Management.  Users can now register, login, create and delete accounts, change user’s 

privilege and see statistics on their personal usage of the system in a secure environment. 

In addition, system administrators can locally or remotely manage all accounts. 

Improvements to PredictOnline include the removal of the java policy file.  In the 

previous version, a java policy file was needed on the user’s computer to allow 

PredictOnline to access data via applets.  Upload and download functions without java 

policy files have been developed in JSP.  Also, the neural network algorithm that we 

favor (conjuate gradient algorithm) was compared with a newer variant, which improved 

efficiency by nearly an order of magnitude for a test case, but did not blind-test very well; 

thus we are using our current time-tested algorithm in PredictOnline. 

  Java applets codes were designed to implement the user-side interface for a new 

FuzzyRank software package. JSP codes were designed to implement the server-side 

functions. JSP codes, called Fortran executable codes, have been successfully tested, a 

java version is in beta testing now in-house, and will soon be available for general use by 

consortium members. 
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 The development of interactive software allowing users to examine, cross-

reference, and in the case of better proprietary knowledge, adjust data is a core 

component of the final Expert System.  A java-based software tool to accomplish this has 

been completed and is being tested now on our existing Rules base. 

  

Engineering 
 
Lower Brushy Canyon Clastics 

Prior to the advent of a precise sidewall coring procedure, noncommercial Brushy 

Canyon completions were a problem.  A new method based on artificial intelligence to 

predict bulk volume oil from conventional logs was developed 

The methodology was developed with the Nash Draw #23 log-core information 

and was detailed in the Second Annual Report.  In brief, it is known that operators rely on 

core analyses of porosity and oil saturation to make their Brushy Canyon completion 

decisions.  Artificial intelligence tools, fuzzy logic and neural networks, were used to 

select the logs and to develop correlations with core measurements of the product of 

porosity and oil saturation (bulk volume oil), with the potential of reducing or eliminating 

the need for core information.    

Fuzzy ranking was used to prioritize the logs on a global basis that best correlated 

with bulk volume oil, BVO, as measured in a 200 ft whole core from the Nash Draw 

Field.  The density and neutron porosity logs, along with the deep and shallow resistivity 

logs, were then used as inputs to a neural network to develop a multivariate regression 

equation (trained neural network) that correlated the four logs with BVO.  The Nash 

Draw 23 neural network was found to be robust by blind-testing it with logs and core data 
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from 18 additional wells in the Nash Draw Field and 14 wells in the North Lee Field.  

The blind testing generally fit the BVO patterns evident in the limited core data. 

The trained and tested Nash Draw 23 neural network was used to generate 

pseudo-BVO logs on 34 Lower Brushy Canyon wells in the NM Delaware basin.  To 

reduce the risk of non-commercial completions, the 34 BVO pseudo-logs were compared 

to the average oil rate of each of the wells’ first 12 producing months.  A simple neural 

network architecture (3-4-1) was developed to correlate the statistical parameter’s sum, 

average, and standard deviation of the pseudo-BVO log with the production indicator.  

Hence, using the sequential neural network approach, given the four logs through the 

Lower Brushy Canyon, a pseudo-BVO log can be generated and the statistical description 

of the log can be used to estimate the well’s first year monthly production. 

In the third year reporting period, the methodology was applied to a new Lower 

Brushy Canyon dataset (Poker Lake Field) and to a carbonate reservoir dataset.  The 

Poker Lake Field dataset demonstrated the pitfalls that can occur with limited training 

data. 

Two Poker Lake wells had core data for calculating BVO.  Well 89 had 19 core 

measurements (samples) while well 80 had 79 samples.  The well 89 dataset nicely 

illustrates the pitfall of insufficient data.  An insufficient number of samples can result in 

“over-training.”  Over-training is illustrated by the cartoon in Fig. 35.  The fictional 11-

sample dataset illustrated in Fig. 35 was divided into a training set and a testing set.  The 

polynomial best-fit line trains to a 100 R2 using the five data points.  The best-fit straight 

line trains to an 88 R2 using same five data points.  Using the trained polynomial curve 

(dashed line) to predict values could result in large errors, including negative values.  The 

straight-line model predicts values with reasonable error throughout the limits of the 
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dataset.  A real example of this problem occurred with the Poker Lake 89 dataset. The 

density and neutron porosity logs along with the deep and shallow resistivity logs were 

used as input to train a neural network with the limited (19 available) BVO 

measurements.  The training was almost perfect, as shown in Fig. 36.  The Poker Lake 89 

neural network was used to predict the Nash Draw 23 BVO log shown in Fig.  37.  Notice 

that the predicted high BVO values are in areas where the core values (truth) are low.  

Experience to date suggests that the ratio of samples to neural network weights (node tie 

lines) should exceed 2 to minimize the over-training problem.  The more global 

correlations resulting from the Nash Draw 23 dataset adequately predicted the core BVO 

values of Poker Lake 89 even though the fields are about 10 miles apart. 

Carbonate 

Data is currently being assimilated on the Devonian carbonate that exists 

regionally throughout the Delaware basin.  During the initial six months of data 

collection, no whole core information was uncovered.  However, a consortium member 

was interested in applying the log analyses methodology to a carbonate system of algal 

mounds.  The dataset serves as a test of the method in a carbonate reservoir. 

Six wells with a full suite of logs (typical logs shown in Fig. 38) and core data 

throughout a dolomitic carbonate reservoir were made available to the project.  The log 

suite consisted of caliper, gamma ray, photoelectric effect, laterolog deep resistivity, 

laterolog shallow resistivity, microspherically-focused resistivity, density porosity, and 

neutron porosity.  Fuzzy curves were generated to rank the association between the log 

and the respective core-measured BVO.  The caliper, shallow resistivity, and the density 

porosity were found to have a strong relationship with core-measured values of BVO.  

Examples of good and poor fuzzy ranking, defined as the maximum minus the minimum 



                                                                                                                                         33

values of the fuzzy curve plus the R2 value of a best fit straight-line through the curve, are 

shown in Figs. 39 and 40. 

The caliper, shallow resistivity, and the density porosity logs from the Dagger 

Draw 12 well were used to develop a 4-8-4-1 neural network that trained to a 90% 

correlation coefficient with 200 core-measured values of BVO.  The training is illustrated 

in Fig. 41.  The photo-electric factor, shallow resistivity, and the density porosity logs 

were used to model a BVG log defined by the core values of 1-Sw-So.  The goodness of 

the 4-6-4-1 neural network training (85% correlation coefficient) is seen in Fig.  42. 

The correlations of caliper, shallow resistivity, and density porosity logs with bulk 

volume water (BVW) ranked highest and were used to develop a 4-6-4-1 neural network 

to produce a pseudo-BVW log.  The goodness of the 85% correlation coefficient is seen 

in Fig. 43. 

The same three logs were used to train a 4-6-6-1 neural network to produce an 

aspect ratio pseudo-log.  The aspect ratio logs are defined by Φ/k as measured in the 200- 

core values.  The goodness of the 80% correlation training is seen in Fig. 44.  

There are an additional five wells with logs and cores available to train and test 

neural network architectures.  The BVO neural network architecture and the best training 

correlation coefficient for each well is shown in Table 2 along with the number of 

training samples included in the each wells dataset.  Notice that the Dagger Draw 12 well 

with the 4-8-4-1 neural network produced the best training correlation coefficient.  The 

same is true for the BVG and BVW neural networks. 

 The Dagger Draw 12 BVO and BVG neural networks were used to generate 

pseudo-BVO and -BVG logs for the five wells with core information.  As a blind test the 

pseudo-logs were compared to the core measurements in Figs. 45 and 46.  The statistical 
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parameter’s sum, average, and standard deviation for each pseudo-log were calculated 

and cross-plotted with the average of the first producing year’s monthly oil and gas 

production.  The cross-plots are shown in Figs. 47 and 48.  

 Lastly, two of the statistical parameters were used to generate correlations to 

predict oil, gas, and water production.  The dataset is limited to the six wells previously 

discussed, so a simple neural network architecture (2-1-1) with Sum and Avg as the 

inputs was used to develop the production correlations shown in Figs. 49 and 50 used to 

predict oil and gas rates.  Water production predictions were poor.   

 
Geology  
 
 
Brushy Canyon 

The Brushy Canyon Formation of the Delaware Mountain Group (Permian: 

Guadalupian) consists of 550 to 1650 ft of interbedded fine-grained sandstones, 

siltstones, and minor detrital carbonates deposited in the deep-marine Delaware Basin 

(Fig. 51). The Brushy Canyon Formation unconformably overlies the Bone Spring 

Formation (Permian: Leonardian) or erosional remnants of the Cutoff Formation 

(Permian: Guadalupian) throughout much of the Delaware Basin (Fig. 52). The Brushy 

Canyon is overlain by basinal sandstones and siltstones of the Cherry Canyon Formation 

(Permian: Guadalupian). In New Mexico, depth to the Brushy Canyon ranges from 1950 

ft near the northern and western margins of the basin to 8600 ft in the deepest part of the 

basin in southwest Lea County. 

The Brushy Canyon became a major exploration and development target in the 

middle to late 1980s. It had been drilled through and ignored for decades as producers 

concentrated on deeper targets, mainly gas-productive intervals in the Morrowan and 
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Atokan (Lower Pennsylvanian) and also on shallower oil-productive sandstones of the 

Bell Canyon Formation of the Delaware Mountain Group (Permian: Guadalupian). The 

Brushy Canyon sandstones were not considered a viable exploration target for four 

reasons (Montgomery et al., 1999). First, they are low-resistivity sandstones for which 

conventional log analysis indicates high water saturations. Second, they are less 

permeable than shallower oil-productive sandstones in the Bell Canyon. Third, the 

Brushy Canyon is a deeper target than the Bell Canyon, therefore making it seem not as 

economically viable. Fourth, little or no oil flows from Brushy Canyon sandstones on 

drill-stem tests. Since the mid-1980's, however, the Brushy Canyon has been recognized 

as a major, economically viable target. More than 110 fields currently produce oil and 

associated gas from the Brushy Canyon in southeast New Mexico.  The predominant 

trapping mechanism is stratigraphic (Montgomery et al., 1999). 

The Brushy Canyon has been subdivided into three informal stratigraphic units by 

most workers, and upper unit, a middle unit, and a lower unit (Fig. 52; Montgomery et 

al., 1999). Boundaries between the units are not well defined and generally vary from 

worker to worker. The upper Brushy Canyon produces significant volumes of oil and the 

middle Brushy Canyon produces relatively little oil. The lower unit has produced most of 

the oil obtained from the Brushy Canyon. This part of the project concentrated on the 

lower Brushy Canyon.  

Brushy Canyon fields have typically been discovered by reexamining and 

reentering old wells that have produced from deeper stratigraphic units such as the 

Morrow (Lower Pennsylvanian) but have been abandoned as the deeper production has 

declined to subeconomic levels. Recompletions are typically made in those wells that 

exhibited good mudlog shows in the Brushy Canyon but were never tested or were tested 
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with water recovery on a drill-stem test. A few operators have drilled new wells updip of 

older wells that have exhibited shows in the Brushy Canyon. Generally, however, most 

discoveries have been made by reentering old wells. Most exploration, therefore, has 

been concentrated on wells that have been drilled to Lower Pennsylvanian targets. While 

this has proved to be a successful and economically viable strategy for many operators, it 

has largely limited exploration to areas where recently abandoned deep wells are 

available for reentry. Because many of the wells were originally drilled on structures that 

affect the Lower  Pennsylvanian, most Brushy Canyon exploration has therefore been 

essentially structural in aspect and has largely ignored the stratigraphic component of 

trapping that is dominant. 

This portion of the project involved the acquisition, synthesis, and analysis of 

structural, stratigraphic, production, reservoir, and source-rock data. The data are 

collected from more than 720 wells basinwide (Fig. 53). Wherever possible, data were 

collected so that data from productive wells in Brushy Canyon pools were offset by 

nonproductive wells adjacent to those pools. In this way, geologic contrasts between 

productive areas and immediately adjacent nonproductive areas are reflected in the 

dataset and its derivative maps. Data synthesis and analysis performed as this part of the 

project have been used to help devise and structure the neural network system.  

The structure on top of the Bone Spring Formation (Fig. 54) and lower Brushy 

Canyon Formation (Fig. 55) indicate more than 7500 ft of structural relief between the 

shallower parts of the basin to the north and the deepest part of the basin to the southeast. 

The structure on the top of the Brushy Canyon Formation (Fig. 55) is very similar with a 

relief of only 7200 ft, indicating a partial infilling of the basin during Brushy Canyon 

time. The structure on the top of the Bone Spring Formation includes numerous local 
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closures and structural noses that are superimposed on the regional descent of the Bone 

Spring into the Delaware Basin. Also present are several structural lows that extend into 

the basin from adjacent areas on the Northwest shelf. As discussed below, many of these 

local structures controlled sand distribution in the lower Brushy Canyon and are therefore 

paleobathymetric elements that were in existence at the time of Brushy Canyon 

deposition. Many, but certainly not all,  appear to be located over Pennsylvanian 

structures described by Montgomery et al. (1999). Pennsylvanian- and Permian-age 

structure has been overprinted by a southeast regional tilt of Laramide (Late Cretaceous 

Early Tertiary) age (Hills, 1963; Dickerson, 1985). 

The lower part of the Brushy Canyon Formation is 60 to 500 ft thick within the 

project area in southeast New Mexico (Fig. 56). It consists of arkosic to subarkosic, fine-

grained sandstones (reservoir facies), organic-rich siltstones (seal and source-rock facies), 

dolostones and limestones that are present mostly near the shelf margin, and black to 

dark-gray calcareous shales or marlstones (Montgomery et al., 1999). 

Brushy Canyon sandstones are allochthonous sediments that originated on 

surrounding shelf areas and were transported into the deep-marine Delaware Basin prior 

to deposition. The mechanism of transport is enigmatic and has been ascribed more 

recently to various gravity-related flow processes including saline density currents 

(Harms, 1974; Harms and Williamson, 1988; Harms and Brady, 1996) and turbidity 

currents (Hull, 1957; Jacka et al., 1968). Whatever the mechanism of transport, the 

conveying currents apparently flowed downslope and deposited the sands in submarine 

channels and on submarine fan and channel complexes (e.g. May, 1996; Thomerson and 

Catalano, 1996; Basham, 1996; Broadhead et al., 1998). Most depositional models 

hypothesize that Brushy Canyon sands were initially transported across the Northwest 
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shelf during lowstands of sea level when the shelf was exposed. The sands were then 

remobilized and transported into the basin through submarine canyons incised into the 

shelf-edge carbonates.  

Thicker areas of the lower Brushy Canyon were deposited in structurally low 

depressions in the underlying Bone Spring Formation. Many of these depressions 

originate at the shelf edge and are elongate perpendicular to the shelf edge. This 

relationship between lower Brushy Canyon thickness patterns and underlying Bone 

Spring morphology indicates that the structural depressions were depressions that acted 

as conduits for the transport of Brushy Canyon sands into the deep basin and as ponding 

areas where submarine fans were formed. 

Similar patterns of thickness distribution can be seen on isolith maps of reservoir 

quality sandstone within the lower Brushy Canyon. One map, derived from density 

porosity logs, show the net thickness of sandstone with at least 15 % porosity (Fig. 57). A 

map that shows thickness of sandstone with at least 10%t porosity has similar patterns 

(Fig. 58). Both of these maps indicate the distribution of reservoir quality sandstones that 

are capable of sustained, economic levels of oil production, although the sandstones with 

a minimum of 10% porosity may be marginally productive. Reservoir quality sandstones 

in the Brushy Canyon that are oil-productive typically have porosity in the 12 to 22% 

range (see Asquith et al., 1996; Gawloski, 1995; Hoose and Dillman, 1995; LeMar, 1995; 

May, 1996; Mitchell, 1995; Tittl, 1995; White, 1995; Worrall, 1995). It is possible that 

some sandstones with more than 15% porosity will not be productive because of the 

dominance of micropores that that inhibit the migration and production of oil (see 

Asquith et al., 1996). 
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Thicker areas of reservoir quality sandstones are located along the northern and 

western margins of the basin and are distributed along linear to lobate trends that extend 

from the basin margin into the deeper parts of the basin. Primary sources of reservoir 

quality sand were mostly located to the northwest and the west. The eastern part of the 

Northwest shelf contributed lesser, but still significant, volumes of sand. Only minor 

amounts of reservoir quality sand were derived from the Central basin platform to the 

east. An overlay of the 15% porosity isolith map on the Bone Spring structure map 

indicates that the reservoir sandstones are confined mostly to the structural depressions in 

the underlying Bone Spring or are present as lobe-shaped deposits (submarine fans) 

downslope of where the depressions terminate (Fig. 59). Deflection of transporting 

currents around structural closures and noses in the basin is evident in the map patterns. 

Depositional sandstone units are separated by 5 ft to 20 ft thick layers of organic-

rich siltstones. These siltstones are represented on logs as radioactive beds. Most exhibit 

much greater lateral continuity than the interbedded sandstones. Several of the siltstone 

beds can be correlated throughout the basin. They are thought to represent periods of 

basin starvation (Garber et al., 1989; Gardner, 1997). The siltstones are use to internally 

subdivide the Brushy Canyon into its upper, middle, and lower units. 

When areas of established, discovered oil production from the lower Brushy 

Canyon are compared with the structural configuration of the lower Brushy Canyon (Fig. 

55), it is evident that oil accumulations are not coincident with the larger scale structural 

closures and noses. Productive areas are mostly coincident with structurally low areas in 

the Brushy Canyon. These low areas are inherited from paleobathymetric and 

paleostructural lows that characterize the upper surface of the underlying Bone Spring 

Formation. Areas of lower Brushy Canyon production are coincident with reservoir 
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fairways where net thickness of lower Brushy Canyon sandstones with at least 15% 

porosity is 15 ft or more (Fig. 57). The map of net thickness of sandstones with porosity 

greater than 10% exhibits a somewhat less explicit correlation with production (Fig. 58). 

Therefore, the fuzzy logic system probably should not emphasize structure in the 

conventional manner. Instead of focusing target areas on structural closures and noses, 

the fuzzy logic system will focus on paleostructural lows that acted as conduits for 

sediment transport. Structural closures may be significant where they are located 

downslope and acted to pond sediment flows and cause accumulation of thick reservoir 

quality sands, or where the structural configuration postdates sediment deposition and 

therefore had no affect on sediment transport routes. 

A major question is raised by the maps that overlay productive areas on the 

reservoir sandstone trends. Why is production largely absent from areas in the 

westernmost and northwesternmost parts of the research area where reservoir sandstones 

occur in abundance? These areas typically have more than 100 ft of lower Brushy 

Canyon sandstone with at least 15% porosity, yet these areas lack production. Although 

this may be partially due to incomplete testing and evaluation, it is likely that geological 

factors also play a role and that some parts of these sandstone-rich areas are truly barren 

of commercial hydrocarbons. Can this be explained by a paucity of seals? It may be that 

oil and gas have migrated updip out of the basin and have not been trapped in the Brushy 

Canyon for lack of adequate barriers to migration. Figure 57 shows that the larger oil 

accumulations within the Brushy Canyon coincide with areas of thick reservoir 

sandstones that thin or pinchout in an updip (northerly, northwesterly, or westerly) 

direction. The thin sands in the northernmost and westernmost parts of the basin appear 



                                                                                                                                         41

to be continuously connected with the outcrop and therefore have not provided updip 

seals, at least along major sand trends. 

Alternatively, eastward tilting during the Laramide may have led to flushing of 

the Brushy Canyon in this region by influent groundwaters (Lindsay, 2001). Influent 

waters may have moved downdip in an easterly direction until they encountered seals 

which also acted to trap hydrocarbons in stratigraphic traps to the east. Map that show 

salinity of produced lower Brushy Canyon waters (Fig. 60, 61) were constructed for this 

project and indicates that salinity decreases toward the northern and western margins of 

the basin indicating recharge of fresh water along the lower Brushy Canyon outcrop, and 

therefore supporting Lindsay’s hypothesis.  

Another possibility that may explain the sparse distribution of hydrocarbons in 

these areas is an absence or paucity of source rocks. It has been reasonably well 

established that, at least in places, oil accumulations within the Brushy Canyon are 

sourced by organic-rich siltstones within the Brushy Canyon (Hays and Tieh, 1992; 

Robinson, 1993). The sandstone reservoirs are interbedded with their source rocks and 

the source strata also act as seals for the accumulations. Robinson (1993) concluded that 

the low permeabilities of Brushy Canyon reservoirs are indicative of short migration 

distances. If this is the case, then oil accumulations should be preferentially concentrated 

in areas where source rocks are mature, thick, and have relatively high contents of 

organic carbon. Data and maps relating to these hypotheses were collected and created as 

part of this project in order to provide the fuzzy expert tool information with which to 

evaluate the importance of source rocks. A map of total organic carbon (TOC) content of 

lower Brushy canyon source rocks (Fig. 62) indicates that sufficient organic material is 

present within the lower Brushy Canyon to form adequate source facies throughout the 
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Delaware Basin. Thermal maturity of Brushy Canyon source rocks, although adequate for 

oil generation throughout the research area, increases to the south in the deeper parts of 

the basin and also to the west with increasing proximity to the Rio Grande rift (Figure 

63). Oil gravity data collected and mapped for this project indicate a bimodal distribution 

of lower Brushy Canyon oils (Fig. 64). Oils with higher API gravities (API > 40 degrees 

which are lighter and presumably more thermally mature) have been trapped along major 

sandstone fairways whereas somewhat heavier oils (API < 40 degrees) are present where 

sand bodies do not occur along major sandstone fairways. This distribution of oils 

suggests that lighter more mature Brushy Canyon oils may have been generated in 

deeper, more mature parts of the Delaware basin and migrated updip along sandstone 

fairways until they were trapped. The somewhat heavier oils had their origin in source 

beds close to the reservoirs in the shallower parts of the basin; the limited extent of 

sandstone bodies in these areas caused local hydrocarbon entrapment and prevented the 

oil from migrating longer distances. Thus, proximity to sandstone fairways plays a 

significant role in oil gravity and quality within the lower Brushy Canyon. 

 

Siluro-Devonian Carbonates 

 Devonian and Siluro-Devonian carbonates produce from numerous oil and gas 

fields in southeastern New Mexico (Fig. 65). The 122 Siluro-Devonian fields in southeast 

New Mexico had produced a cumulative 443 MMBO by 1995 (Broadhead and Speer, 

1995), that is, 10% of the oil produced from southeast New Mexico. Production is from a 

number of zones within the Silurian and Devonian sections (Fig. 66). A variety of 

mechanisms form traps, most notably anticlines, faulted anticlines, and subunconformity 

pinchouts (Speer, 1993). 
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 Geologic data acquisition continued on the Siluro-Devonian carbonates during the 

reporting period. Stratigraphic and structural data were correlated and compiled by 

Destini Baldonado, a graduate student in the Earth and Environmental Sciences 

Department at New Mexico Tech, assisted by Jason Lennane, graduate student, and 

Becky McGill, undergraduate student, who are also in the Earth and Environmental 

Sciences Department at New Mexico Tech.  One thousand six hundred wells in southeast 

New Mexico that have penetrated the Devonian (Fig. 67) had been identified during the 

previous reporting period and entered into a database; longitude and latitude have been 

calculated from a digital land grid for these wells. During the present reporting period, a 

regional network of cross sections was constructed in order to establish correlation 

control and to provide quality assurance of data (Fig. 67). Logs from a total of 465 wells 

were correlated throughout southeast New Mexico (Fig. 68). Correlated wells were 

selected from all productive Siluro-Devonian fields and nonproductive areas as well in 

order to provide a dataset that fully contrasts productive areas with nonproductive areas. 

In each well, the top of the Siluro-Devonian carbonate section was correlated in addition 

to the top of the Fusselman Formation and the top of the Montoya Formation. Several 

prominent marker beds within the Siluro-Devonian section (Fig. 67) were correlated as 

well.  

Similar to our earlier work on the Brushy Canyon Formation, we used our 

correlated data to produce geologic structure maps (Fig. 69), and isopach (thickness) 

maps (Fig. 70) of Siluro-Devonian carbonate strata. We also compiled thickness data for 

the eleven units that constitute the Siluro-Devonian carbonate sequence (Figs. 66 and SD-

3). A subcrop map that shows the Siluro-Devonian units that underlie the Woodford 

Shale was constructed (Fig. 71). This map indicates that strata that underlie the Woodford 
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are truncated to the north and west by a regional angular unconformity. Of 48 productive 

wells examined thus far, almost half have produced from units 3, 4, and 5 within the 

Siluro-Devonian section (Fig. 72). We will relate these maps to production 

/nonproduction in both visual and artificial intelligence settings. The goal is to use our 

artificial intelligence system to predict trap configurations and locations in Devonian 

strata. 

 We began construction of regional maps of petroleum source rocks during the 

2002-2003 reporting year. Assisting in this effort were Bryce Johnson, Lynsey 

Rutherford and Irene Roselli, undergraduate students at New Mexico Tech. The chief 

source rock unit is the Devonian Woodford Shale, which directly overlies the Devonian 

carbonates (Fig. 66). The Woodford is thought to be the chief source unit for lower 

Paleozoic reservoirs in the Permian (Hills, 1984). Strata that overlie the Siluro-Devonian 

carbonates north and west of the Woodford pinchout may also be source rocks and will 

be evaluated for source character during the next project year. 

Existing source rock data were utilized where available (Broadhead et al., 1998). 

Because of a paucity of publicly available source rock data in the lower Paleozoic 

section, source-rock analyses were performed on 11 additional wells in order to provide a 

distributed network of data points throughout the basin (see Fig. 73 for data locations). 

The new source rock analyses were performed on well cuttings archived in the 

Subsurface Library of the New Mexico Bureau of Geology and Mineral Resources. 

As with the Brushy Canyon, we have mapped regional distributions of source 

rock maturity for the Woodford. We plan to map distribution of source-rock quality and 

relate these to oil and gas distribution. The top and base of the Woodford Shale were 

correlated in 514 wells during the most recent project year. These data will be used to 
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map Woodford structure, thickness, and extent. Because the Woodford acts as the vertical 

seal on most oil and gas accumulations in the Siluro-Devonian carbonates, its thickness 

and extent is of interest not only in its role as a source rock but also in the role it plays in 

trap formation. 

With the depth of the Woodford varying from less than 7000 ft in the northern 

part of the basin in Chaves County to more than 15,000 ft in the southern part in Lea and 

Eddy Counties, we have encountered thermal maturity variations across the oil 

window/gas window boundary that relates to the distribution of oil reservoirs and gas 

reservoirs (Fig. 73). The map of Siluro-Devonian oil and gas fields (Fig. 65) indicates 

that most gas fields are located in the south-central parts of the basin where thermal 

maturity of source rocks is higher. The higher thermal maturity relates generally to 

structural depth, but not entirely. These relationships will be quantified for use in the 

artificial intelligence system. Thermal maturity variations may also help in the prediction 

of gas-oil ratios and therefore relate to aspects of recovery efficiency. 

Total organic carbon (TOC) values were also mapped for the Woodford (Fig. 74). 

This map indicates the Woodford contains sufficient TOC to be a good source rock 

throughout the area, but TOC content does decrease significantly toward the northern 

edge of the basin where the Woodford is also thin. During the next project year, we will 

combine TOC with other source rock parameters such as thickness and maturity to 

produce maps of generative potential that are anticipated to be related to the distribution 

of hydrocarbons in the Siluro-Devonian section. 

 

Experimental 

 There are no experiments associated with this project. 
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Oil Price Forecast  
 
 Future oil price is the fundamental parameter in assessing the risk of any oil or 

gas production venture.  One aggregate of speculation by experts on the purchasing and 

selling of crude oil is the Goldman Sachs future's price of oil.  These experts try to 

reasonably predict the price of a barrel of oil a month in advance.  Shown in Fig. 51 is the 

30-day average of these experts’ predictions preceding the strike date.  The average is 

compared to the Navajo refinery posted price of West Texas Intermediate on the strike 

data.  Notice that from June 1996 through October 1997 the experts did an excellent job.  

However, from November 1997 to March 1999 the error is approximately 33% or about 

$5/bbl more than the posted price.  Also from May 1999 to December 2000 the error is 

about 25% or $7/bbl less than the posted price.  The predictions presented in Fig. 51 are 

crossplotted in Fig. 52.  Notice that R2 is 0.72, yielding an 85% overall correlation 

coefficient.  It might prove fruitful to investigate other future’s estimates to see if they 

can more accurately predict the future price of oil. 

 The future price of commodities other than oil is also the subject of speculation by 

experts.  The 90-day future price of the Euro vs. the Yen was examined using crossplots 

similar to the oil futures versus posted price, the hope being that Euro/Yen traders might 

indirectly have insight to the future price of oil.  Figure 53 shows the crossplot of the WT 

Posted Price of oil vs. the 90-day average of the Euro/Yen.  Based on the R2 of 0.96 (98% 

correlation coefficient) there appears to be a strong relationship between the Euro/Yen 

future price and the posted price of WT intermediate, at least for this small dataset. 

 The relationships between the three-month future price of the Euro/Pound, 30-

year Treasuries, 10-year Treasuries, and the Future Dow Jones with the posted price of 
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WT intermediate oil were also examined in a similar manner.  The results based on the 

goodness of the best-fit line are summarized in Table 7. 

Table 7. Goodness of the Relationship between Commodity Future Price and Oil Price 
 
Commodity Correlation Coefficient, % 
Goldman Sachs future price of oil 85 
Euro/Yen 98 
Euro/Pound 96 
30-year Treasuries 94 
10-year Treasuries 94 
Future Dow Jones 93 
 
 The results of this preliminary analysis, albeit with a small dataset, suggests that 

the future price of some commodities other than oil may be useful when predicting oil 

price. Assuming that the correlation coefficient describes experts’ ability to forecast the 

future, it appears that the futures price of the Euro/Yen and Euro/Pound are closely tied to 

the price of oil. This is not as surprising as one might think, as both the Euro and Yen (for 

example) are currencies for nations and regions which on a whole are dependent on oil 

imports to fuel their industries, and hence their economies. 

 A strong concern, however, is that these futures may be strongly affected by many 

of the same factors that affect the accuracy of futures prices and therefore break down 

prior to periods of change, such as a sudden war, or other unexpected event. 

 Ultimately most users will likely prefer to use their own corporate philosophy 

when adding the economic impact of future oil price to the Risk assessment.  This will be 

a necessary feature of the final system. 

 
Technology Transfer 
 
 During this twelve-month period (April 2002–March. 2003) the following eleven 

papers or presentations were made to disseminate the results of the project: 
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stratigraphy of Siluro- Devonian carbonates, Tobosa Basin, New Mexico 
(abstract): Transactions Southwest Section AAPG Convention, Fort Worth, 
Texas, CD-ROM.  

6. Lennane, J., 2002, Controls on the accumulation of hydrocarbons in the lower 
Brushy Canyon Formation, southeastern New Mexico: M.S. thesis, New Mexico 
Institute of Mining and Technology, 147 p. 

7. Lennane, J., and Broadhead, R.F., 2002, The hydrocarbon producing rocks of the 
lower  Brushy Canyon (abstract), in Transactions Southwest Section AAPG 
Convention: Roswell Geological Society, p. 91. 

8. Subramaniam V., and Weiss, W.W.: “Evaluation of Well Completion 
Opportunities in the Lower Brushy Canyon Using Neural Networks,” 
Transactions, Southwest Section A.A.P.G Convention, Ruidoso, NM June 6-8, 
2002. 

9. Weiss, W.W.: "Reducing the Risk of Installing a Waterflood," Presented at the 
Annual Petroleum Engineering Summer School, Workshop No. 11 Risk 
Minimization and Probabilistic Application in the Petroleum Industry, 
Dubrovnik, Croatia, 10-14 June, 2002. 

10. Weiss, W. W., Gottumukkala, V., and Balch, R.S.: “A New Method of 
Calibrating Wireline Logs With Carbonate Core Measurements to Recognize Pay 
Zones,” Paper 77330 presented at the SPE Annual Technical Conference, San 
Antonio, TX Sept 29, 2002. 

11. Weiss, W. W., Balch, R.S., and Stubbs, B.A.: “How Artificial Intelligence 
Methods Can Forecast Oil Production,” paper SPE 75143 presented at the 2002 
Symposium on Improved Oil Recovery, Tulsa, April 13-17. 

 
Additionally, five companies have asked specifically for information on areas of 

the Predicted Potential map.  Zooms of these areas were generated for Strata Production 
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Company, Bass Enterprise Production Company, Reed and Stevens Inc., Speerex Ltd., 

and Lynx Petroleum Consultants Inc. 

Problems Encountered  

 The acquisition of regional seismic lines continues to be a problem due to the 

value of the data.  Local datasets are available such as those from the DOE-funded Nash 

Draw project.  The processed data from this 3D data set was used to develop new 

methods of interpreting the distribution of thickness, porosity, water saturation and depth 

throughout the survey area.  The methodology can be applied throughout the Delaware 

Basin. 

 Personnel changes at the Petroleum Recovery Research Center required changing 

the Project Manager to Dr. Robert Lee and the PRRC PI to Dr. Robert Balch.  The 

transition has been smooth and no delay or changes were made to the project or its time-

line. 

 

Next Year’s Tasks  
 

Continue Expert System Development 

 Currently the Expert System has been programmed to use about 100 rules in 

several different categories.  The current system can be run on a laptop computer and will 

be of great assistance in giving human explorationists a feel for the system. Work is 

ongoing in numerically grading questions, and interviewing Experts in both Brushy 

Canyon, and Devonian prospecting.  It is anticipated that a fully functional system for the 

Brushy Canyon will be running before the next semi-annual report and the PRRC is 

organizing a large event this summer to showcase the system to Producers.  This will 

coincide with the Fee Tool annual Symposia. 
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Log Analysis 

 As Devonian log information becomes available it will be correlated with core 

data to develop pseudo-logs.  Production will then be correlated with the pseudo-log 

statistics. 

Geology  

During the next project year, we will finish acquisition of all geologic data. This 

will include: 

1. Obtaining a limited number of source rock analyses on post-Woodford source 

facies that directly overlie the Siluro-Devonian carbonates north and west of the 

Woodford pinchout in order to assess their contributory role as a source for oil and 

gas in the Siluro-Devonian carbonates in the northern and western reaches of the 

basin. 

2. Construct source-rock attribute maps of possible post-Woodford sources 

identified as a result of step 1, above. 

3. Construct a worms-eye map of strata that overlie the uppermost surface of the 

Siluro-Devonian carbonates. 

4. Use Woodford data to produce an isopach map of the Woodford Shale. 

5. Use Woodford thickness and source rock data to produce maps related to the 

generative potential of the Woodford. 

6. For each of the Siluro-Devonian oil and gas fields, produce a map that indicates 

the Siluro-Devonian stratal unit that is the primary productive unit in that field. 

7. Produce isopach maps of the major productive Siluro-Devonian stratal units and 

relate them to structure, stratigraphy, source rocks, and oil and gas production. 
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8. Relate source rock thermal maturity to gas-oil ratios in Siluro-Devonian carbonate 

reservoirs. 

 
Conclusions 
 

Substantial progress has been made towards a finished Expert System that will 

run remotely from a browser on nearly any computer and be able to aid in development 

and drilling decisions for both the Brushy Canyon and Devonian plays by providing 

readily accessible public information that simulates an "Expert" opinion of a prospect in a 

short time, to enhance the work of a human explorationist. 

   The emphasis during the April 2002 through March 2003 period was directed 

toward Silurian-Devonian geology, development of rules for the fuzzy system, and on-

line software. Four major categories of regional data (gravity, aeromagnetic, structure, 

and thickness) were selected, compiled and finalized.  Regional gravity surveys cover the 

entire area of the Delaware basin and have been compiled with an accuracy of a few 

milligals.  

We have generated a number of new and useful tools and technologies to support 

construction of the Expert System, including online useable interfaces for neural network 

analysis (PredictOnline), ranking of potential inputs using fuzzy logic (FuzzyOnline), a 

preliminary Expert System able to make rudimentary drilling decisions, and a web 

interface for accessing the databases and Expert System software.  

Finally, this year’s research has resulted in eleven papers that were presented at 

meetings.  
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Fig. 1.  Histogram of average hydrocarbon equivalent.  Value is average monthly 

production over the first year of production for Brushy Canyon wells. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Log filtered version of histogram from Fig. 1.  Notice that the data is much better 

behaved and follows a rough gaussian curve.  It is easier to see outliers with the 
data in this format. 



 54

y=Random(x)+(x)^0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

X

Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Sample fuzzy membership functions drawn for two points of a 100-point random 

data distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Sample fuzzy membership functions drawn for two points of a 100-point random 

data distribution with a trend added. 
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Fuzzy Curves and Their Trends
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Fig. 5. Fuzzy curves for the data sets in Figs. 3 and 4.  Fuzzy curves are drawn by doing 

a weighted sum of all the fuzzy membership functions. 
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Fig. 6. Operation of second stage fuzzy ranking program FuzzyOnline.  A) is a sample 

input file.  In this case we wish to correlate to each of 36 data found in the 
database for 520 wells and the average monthly production we wish to correlate 
to.  B) shows a progressive reduction in the number of possible inputs (initially 
36) through several iterations.  In each iteration the best fitting variable is 
identified, then the rest of the data is studied for uniqueness with respect to that 
best variable.  In this case five iterations identified the four strongest and unique 
inputs. C) The generated output file shows the strength and ID number of the best 
inputs for regression analyses 

 

It 1: 22 non-random inputs 
(14 random inputs 

It 2: 17 non- 
random inputs
independent 
of 
#6 

It 3: 14 non- 
random inputs
independent 
of 
#6 and #32 

It 4: 13 non- 
random inputs 
independent of 
#6, #32, and #2 

It 5: no non-random ind- 
ependent variables 

    a) Input: gravity dx-grav dy-grav  ...36   production  

    b) Processing   

c) Results  
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Fig. 7. Crossplot of neural network training using the inputs identified via FuzzyOnline. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Crossplot of testing data for the trained neural network of Fig. 7. 
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Fig. 9. Map of predicted production potential based on the trained and tested neural 

network regression. 
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Fig. 10.This figure demonstrates the benefits of neural network regressions for complex 

problems where forecasts need to be made.  Assuming only the five points 
enclosed by diamonds are known to start, it is quite easy to fit a polynomial that 
exactly fits the training data but poorly fits the true data distribution.  Neural 
networks can bypass this problem if a sufficient sample exists for training by 
creating a generalized solution. 
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Fig. 11. The original schematic for the fuzzy expert system shell. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 12. More complicated system, which breaks the analysis into several separate 

categories to simplify calculations and customization. 
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Is the Prospect located within 5 miles of 
established Brushy Canyon Production?

YES - Enhanced possibility of Oil 
/ Gas

NO - Reduced Possibility of Oil / 
Gas

Is the established production 
downdip of the prospect? Move to Trap Asses. 2 

Questions

YES - Enhanced possibility of Oil 
/ Gas

NO - Reduced possibility of Oil / 
Gas

Move to Trap Asses. 2 
Questions Is the established 

production on structural 
strike with the prospect?

YES - Enhanced possibility of 
Oil / Gas

NO - Reduced possibility of Oil / 
Gas

Move to Trap Asses. 2 
Questions

Is the Prospect located within 5 miles of 
established Brushy Canyon Production?

YES - Enhanced possibility of Oil 
/ Gas

NO - Reduced Possibility of Oil / 
Gas

Is the established production 
downdip of the prospect? Move to Trap Asses. 2 

Questions

YES - Enhanced possibility of Oil 
/ Gas

NO - Reduced possibility of Oil / 
Gas

Move to Trap Asses. 2 
Questions Is the established 

production on structural 
strike with the prospect?

YES - Enhanced possibility of 
Oil / Gas

NO - Reduced possibility of Oil / 
Gas

Move to Trap Asses. 2 
Questions

Is the Prospect located within 2 miles 
of non-productive hydrocarbon shows 
in the Brushy Canyon?

NO - Reduced possibility of Oil 
/ Gas

YES - Is the prospect up dip 
from the shows?

YES - Enhanced possibility of 
Oil / Gas

NO - Reduced possibility of Oil 
/ Gas

Move to Trap Assess 3 Questions

Is the Prospect located within 2 miles 
of non-productive hydrocarbon shows 
in the Brushy Canyon?

NO - Reduced possibility of Oil 
/ Gas

YES - Is the prospect up dip 
from the shows?

YES - Enhanced possibility of 
Oil / Gas

NO - Reduced possibility of Oil 
/ Gas

Move to Trap Assess 3 Questions

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Initial rules for trap assessment (Part I). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Initial rules for trap assessment (Part II). 
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Does the prospect lie along a trend where net 
thickness of porous sandstone (>15%) is more than 
100ft?

NO - Reduced possibility of Oil / 
Gas

YES - Enhanced possibility of 
Oil / Gas

YES - Does prospect lie along a trend where net 
thickness of porous sandstone (>15%) is more than 
200ft?

NO - Possibility of Oil/gas not 
enhanced nor reduced.

Prospect Evaluation – Sum weights or 
use function or equation.

Does the prospect lie along a trend where net 
thickness of porous sandstone (>15%) is more than 
100ft?

NO - Reduced possibility of Oil / 
Gas

YES - Enhanced possibility of 
Oil / Gas

YES - Does prospect lie along a trend where net 
thickness of porous sandstone (>15%) is more than 
200ft?

NO - Possibility of Oil/gas not 
enhanced nor reduced.

Prospect Evaluation – Sum weights or 
use function or equation.

Are potential source with TOC >0.5% 
present within the Brushy Canyon within 5 
miles of the prospect?

YES - Enhanced possibility of Oil / 
Gas

NO – Reduced possibility of  Oil / 
Gas

Are potential source with TOC >1.0% 
present within the Brushy Canyon within 5 
miles of the prospect?

YES - Enhanced possibility of Oil / 
Gas

NO – Possibility of  Oil / Gas not 
enhanced

Is the Kerogen Oil prone, Gas prone, or 
neither?

Oil prone – go to SR1 Neither – go to SR3Gas Prone – go to SR2

Are potential source with TOC >0.5% 
present within the Brushy Canyon within 5 
miles of the prospect?

YES - Enhanced possibility of Oil / 
Gas

NO – Reduced possibility of  Oil / 
Gas

Are potential source with TOC >1.0% 
present within the Brushy Canyon within 5 
miles of the prospect?

YES - Enhanced possibility of Oil / 
Gas

NO – Possibility of  Oil / Gas not 
enhanced

Is the Kerogen Oil prone, Gas prone, or 
neither?

Oil prone – go to SR1 Neither – go to SR3Gas Prone – go to SR2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. Initial rules for trap assessment (Part III). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ig. 16. Initial rules for source rock assessment (Part I). 
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Oil Prone - What is the thermal maturity of the 
Kerogen?

Immature 
TAI < 2.3 or
PI <0.1 or
Tmax <430

Gas Window 
TAI > 3.5 or
PI > 0.4 or
Tmax > 460

Oil Window 
TAI 2.3 – 3.5 or
PI 0.1 – 0.4 or
Tmax 430 - 460

Reduced possibility of  Oil / 
Gas

Enhanced possibility of Gas 
and Condensate

Enhanced possibility of  Oil 
/ Gas

Move to source rock 4 
questions

Oil Prone - What is the thermal maturity of the 
Kerogen?

Immature 
TAI < 2.3 or
PI <0.1 or
Tmax <430

Gas Window 
TAI > 3.5 or
PI > 0.4 or
Tmax > 460

Oil Window 
TAI 2.3 – 3.5 or
PI 0.1 – 0.4 or
Tmax 430 - 460

Reduced possibility of  Oil / 
Gas

Enhanced possibility of Gas 
and Condensate

Enhanced possibility of  Oil 
/ Gas

Move to source rock 4 
questions

Gas Prone - What is the thermal maturity of 
the kerogen?

Ro < 0.9 or
TAI < 2.6 or
PI < 0.1

Ro > 0.9 or
TAI > 2.6 or
PI  > 0.1

Biogenic gas is only probable 
hydrocarbon

Enhanced possibility of thermally 
derived gas

Move to Source Rock 4 
questions

Gas Prone - What is the thermal maturity of 
the kerogen?

Ro < 0.9 or
TAI < 2.6 or
PI < 0.1

Ro > 0.9 or
TAI > 2.6 or
PI  > 0.1

Biogenic gas is only probable 
hydrocarbon

Enhanced possibility of thermally 
derived gas

Move to Source Rock 4 
questions

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Initial rules for source rock assessment (Part II). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. Initial rules for source rock assessment (Part III). 
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Inert Kerogen – Is the kerogen severely 
altered?
Ro >2.5  or
TAI >4.2?

NO – possibility for gas is reduced YES – possibility for gas is not 
enhanced

Move to Source Rock 4 
questions

Inert Kerogen – Is the kerogen severely 
altered?
Ro >2.5  or
TAI >4.2?

NO – possibility for gas is reduced YES – possibility for gas is not 
enhanced

Move to Source Rock 4 
questions

Are the source rocks interbedded with the 
reservoir rocks at the prospect?

YES – Greatly enhanced 
possibility of Oil / Gas

NO – Possibility of Oil / Gas not 
enhanced

Are source rocks present within the 
Brushy Canyon downdip of the prospect 
and within 5 miles of the prospect?

YES – possibility of Oil / 
Gas moderately enhanced

NO – possibility of Oil / 
Gas reduced

Prospect Evaluation – Sum weights or 
use function or equation.

Are the source rocks interbedded with the 
reservoir rocks at the prospect?

YES – Greatly enhanced 
possibility of Oil / Gas

NO – Possibility of Oil / Gas not 
enhanced

Are source rocks present within the 
Brushy Canyon downdip of the prospect 
and within 5 miles of the prospect?

YES – possibility of Oil / 
Gas moderately enhanced

NO – possibility of Oil / 
Gas reduced

Prospect Evaluation – Sum weights or 
use function or equation.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 19. Initial rules for source rock assessment (Part IV). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ig. 20. Initial rules for source rock assessment (Part V). 
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Is the prospect in an area identified as 
potentially productive by the NN?

YES - Is the predicted potential 
Low or
Med. or
High

Is the prospect within 2 miles of predicted 
production potential?

YES – Oil / Gas  
potential slightly 
enhanced

NO – Is the prospect 
within 4 miles of 
predicted potential?LOW –

Oil / Gas
potential 
somewhat 
enhanced

MED –
Oil / Gas 
potential 
moderately 
enhanced

HIGH –
Oil / Gas 
potential greatly 
enhanced

YES – Oil / Gas 
potential not 
enhanced

NO – Oil / Gas 
potential 
negatively 
impacted

Move to Regional Assessment 2 Questions

Is the prospect in an area identified as 
potentially productive by the NN?

YES - Is the predicted potential 
Low or
Med. or
High

Is the prospect within 2 miles of predicted 
production potential?

YES – Oil / Gas  
potential slightly 
enhanced

NO – Is the prospect 
within 4 miles of 
predicted potential?LOW –

Oil / Gas
potential 
somewhat 
enhanced

MED –
Oil / Gas 
potential 
moderately 
enhanced

HIGH –
Oil / Gas 
potential greatly 
enhanced

YES – Oil / Gas 
potential not 
enhanced

NO – Oil / Gas 
potential 
negatively 
impacted

Move to Regional Assessment 2 Questions

What region of the basin does the prospect lie in?
Central basin / Margins North and East / Western margins

CENTRAL – Oil and Gas potential is 
enhanced

N or E MARGINS – Oil and Gas potential is 
not affected

W MARGINS – Oil and Gas potential is 
negatively impacted

Prospect Evaluation – Sum weights or use function or equation.

What is the regional thickness of the brushy canyon at 
the location of the prospect?
< 100 feet 
100 to 200 feet
>200 feet

< 100 FEET – Oil / Gas potential is 
reduced

> 200 FEET – Oil / Gas potential is 
enhanced

100 to 200 FEET – Oil / Gas potential 
is somewhat enhanced

Is the prospect on or near a regional structural high?

YES – Oil / gas potential is increased NO – Oil / gas potential unaffected

Is the structural high supported by 
gravity data?

YES – Oil / Gas Potential is 
enhanced

NO – Oil / Gas Potential is 
unaffected

What region of the basin does the prospect lie in?
Central basin / Margins North and East / Western margins

CENTRAL – Oil and Gas potential is 
enhanced

N or E MARGINS – Oil and Gas potential is 
not affected

W MARGINS – Oil and Gas potential is 
negatively impacted

Prospect Evaluation – Sum weights or use function or equation.

What region of the basin does the prospect lie in?
Central basin / Margins North and East / Western margins

CENTRAL – Oil and Gas potential is 
enhanced

N or E MARGINS – Oil and Gas potential is 
not affected

W MARGINS – Oil and Gas potential is 
negatively impacted

Prospect Evaluation – Sum weights or use function or equation.

What is the regional thickness of the brushy canyon at 
the location of the prospect?
< 100 feet 
100 to 200 feet
>200 feet

< 100 FEET – Oil / Gas potential is 
reduced

> 200 FEET – Oil / Gas potential is 
enhanced

100 to 200 FEET – Oil / Gas potential 
is somewhat enhanced

Is the prospect on or near a regional structural high?

YES – Oil / gas potential is increased NO – Oil / gas potential unaffected

Is the structural high supported by 
gravity data?

YES – Oil / Gas Potential is 
enhanced

NO – Oil / Gas Potential is 
unaffected

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 21. Initial rules for regional assessment (Part I). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 22. Initial rules for regional assessment (Part II). 
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Fig. 23 Histogram showing the skewed nature and large mean of the thickness of 

the porous sand. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24. Histogram of the differences in initial and enhanced estimate when 

thickness enhancement reduced. (Difference = final -initial) 
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Fig. 25. Fuzzy membership functions for total organic carbon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 26. Fuzzy membership functions for porosity. 
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Fig. 27. Fuzzy membership curves for the trapmf function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 28. Summary of all ranges for Trap (left), Regional (middle), and risk (right) 

as defined in Table 2. 
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Fig. 29. Fuzzy membership curves for the gaussmf function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 30. Fuzzy membership curves for the gauss2mf function. 



 70

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 31. Fuzzy membership curves for a composite of zmf and smf functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 32. Plot of membership curves with  “dsinmf” and “psinmf” used for both 

low and medium and the “zmf” and “smf” functions for the zero and high. 
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Fig. 33. Plot of membership curves when the “pimf” function is used for low and 

medium parameters and the “zmf” and “smf” functions for zero and high 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 34. Plot of membership curves using “sin” curves for Low and Medium and 

using “zmf” and “smf” curves for the zero and high parameters. 
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Effects of Overtraining 

Linear R2 = 0.88
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Fig. 35. Overtraining cartoon demonstrates that large errors are possible with 100% 
correlation coefficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 36. Small core dataset trains to almost 100% correlation coefficient. 
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Fig. 37. Training to almost 100% correlation coefficient produces an extremely poor 
blind test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 38. Typical logs and core measurements through 200 ft of an algal mound reservoir. 
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Fig. 39. Shallow resistivity log fuzzy curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 40. Gamma ray log fuzzy curve. 
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Dagger Draw #12 BVO 
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Fig. 41. Trained neural network BVO; pseudo-log vs. core measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 42. Trained neural network BVG; pseudo-log vs. core measurements. 
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Fig. 43. Trained neural network BVW; pseudo-log vs. core measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 44. Trained neural network aspect ratio; pseudo-log vs. core measurements. 
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Saguaro#8 BVO from DD#12
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Fig. 45. Blind test of DD# 12 BVO neural network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 46. Blind test of DD# 12 BVG neural network. 
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Ist Year production based on BVO statistics
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Fig. 47. Sum of pseudo-log BVO; log predictions vs. initial oil rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 48. Sum of pseudo-log BVG; log predictions vs. initial gas rate. 
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Fig. 49. Sum and average neural network predictions vs. actual initial oil rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 50. Sum and average neural network predictions vs. actual initial gas rate. 
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Figure 51. Location of project area in relation to Delaware Basin and other geologic 
elements, Permian Basin area southeast New Mexico and west Texas. Geologic elements 
modified from Hills (1984). 
 

 

 
Figure 52. Stratigraphic chart of Delaware Mountain Group. Compiled from Payne 
(1976), Grauten (1979), Harms and Williamson (1988), and Montgomery et al. (1999). 
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Figure 53. Location of well data control points used in the Brushy Canyon part of this 
project. See Figure 511 for map location. 
 

 

 
 
Figure 54. Three-dimensional view of structure on Bone Spring Formation and location 
of oil pools (in green) productive from the lower part of the Brushy Canyon Formation. 
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Figure 55. Three-dimensional view of structure on lower Brushy Canyon Formation and 
location of oil pools (in green) productive from the lower part of the Brushy Canyon 
Formation. 

 

Figure 56. Isopach map of lower Brushy Canyon Formation. 
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Figure 57. Areas productive from lower Brushy Canyon, net thickness of lower Brushy 
Canyon sandstones with porosity > 15%, and wells that unsuccessfully tested the lower 
Brushy Canyon. 
 

 
 
Figure 58. Areas productive from lower Brushy Canyon and net thickness of lower 
Brushy Canyon sandstones with porosity > 10%. 
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Figure 59. Net thickness of lower Brushy Canyon sandstones with porosity > 15% 
superimposed on 3-D diagram of Bone Spring structure. 
 
 

 
 

 
Figure 60. Salinity of produced Brushy Canyon waters superimposed on 3-D diagram of 
Bone Spring structure. 
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Figure 61. Salinity of produced lower Brushy Canyon waters and areas productive from 
lower Brushy Canyon. 
 

 
Figure 62. Total organic carbon content, in weight percent, of lower Brushy Canyon 
source rocks. 
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Figure 63. Thermal maturity of lower Brushy Canyon source rocks as determined by 
Rock-eval TMAX values and areas productive from lower Brushy Canyon. 
 
 

 
Figure 64. API gravity of lower Brushy Canyon oils. 
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Figure 65. Oil and gas fields productive from Siluro-Devonian carbonates reservoirs in 
southeast New Mexico. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 66. Stratigraphic column of lower Paleozoic strata in southeast New 
 Mexico. Production in the Siluro-Devonian section is obtained from several 
 zones within the Thirtyone, Wristen, and Fusselman Formations. Modified 
 from Hill (1986). 
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Figure 67. Regional west-east cross section across the Delaware Basin in  southeastern 
New Mexico, showing internal stratigraphy of the Siluro- Devonian carbonate section. 
 
 
 

 
Figure 68. Wells penetrating sub-Woodford Devonian strata in southeast New 
 Mexico. Logs from 465 of these wells were correlated for this project. 
 



 89

 

Figure 69. Structure contour map of Siluro-Devonian carbonates. 
 

 
Figure 70. Isopach map of Siluro-Devonian strata in southeastern New Mexico. 
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Figure 71. Woodford subcropmap. 

 

 
 
 
Figure 72. Pie diagram indicating relative number of wells that each Siluro-
 Devonian stratal unit (see Fig. 66) produces. 
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Figure 73. Rock_eval productivity index (PI) for the Woodford Shale in  southeastern 
New Mexico. The PI is an indicator of the thermal maturity of  the source rock. Note 
how the Woodford is most mature (in the south-central  part of the basin where the 
underlying Siluro-Devonian carbonates are  productive mainly of gas (see Fig. 65). 
 

 

Figure 74. Total organic carbon (TOC) content of Woodford Shale in southeast   
New Mexico. Note that the Woodford has sufficient TOC for generation of 
 hydrocarbons throughout its extent in southeastern New Mexico.  
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Goldman Sachs Index Futures Price vs Oil-Price
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Fig. 75.  Actual WTI oil price vs.30-day future price. Time format. 
 
 

 
 

Fig. 76. Actual WTI oil price vs. 30-day future price. Crossplot format. 
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Fig. 77. Actual WTI oil price vs. Euro/Yen 90-day future price. 


